|
Logic Syntax \[Q = \neg A\]
|
Circuit Diagram |
|
Logic Syntax \[Q = A \land B\]
|
Circuit Diagram |
|
Logic Syntax \[Q = A \lor B\]
|
Circuit Diagram |
| NOT | AND | OR |
| \[ \begin{array}{|c|c|} \hline A & \neg A \\ \hline 0 & 1 \\ 1 & 0 \\ \hline \end{array} \] | \[ \begin{array}{|c c|c|} \hline \rule{0pt}{2.5ex} A & B & A \land B \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \hline \end{array} \] | \[ \begin{array}{|c c|c|} \hline \rule{0pt}{2.5ex} A & B & A \lor B \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \hline \end{array} \] |
©2025 Jedediyah Williams
This work is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License.
To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-sa/4.0/.